
AD-A148 184 TOWARDS AN IDEAL DATABASE SERVER FOR OFFICE AUTOMATION i/I
ENVflRONMENTS(U) NAVRL POSTGRADUATE SCHOOL MONTEREY CA
S A DEMURJIAN ET AL. OCT 84 NP552-84-8i8

UNCL ASSIFIEEG
9

/2 N

II- mommomommom

Nor

1111.0 EM 2.

L2.2>

S1.25 11.4 N1.6

MICROCOPY RESOLUTION TEST CHART *N

WAMI~kIAL &MAIU OF STaO&AO-tow-A

% %* %

% %.%

NP.S52-84-01B

NAVAL POSTGRADUATE SCHOOL
Monterey, California

~DEC 8

TOWARDS AN IDEAL DATABASE SERVER FOR OFFICE
AUTOMATION ENV IRONMENTS

Steven A. Demurjian, David K. Hsiao, Douglas
S. Kerr, and Paula R. Strawser

October 1984

.j.

Approved for public release, distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217 .

84 12 03 026

I.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker D. A. Schrady
Supefintendent Provost

The work reported herein was supported by Contract NOOO14-84- 4058

from the Office of Naval Research

Reproduction of all or part of this report is authorized.

This report was prepared by:

DAVID K. HSIAfO
Professor of Computer Science

Reviewed by:

Department of Computer Science Dean of Information and Pio icySciencesli

H%

* p._"

V.::

SECURITY CLASSIFICATION OF THIS PAGE at a Bme __________________

REPORT DOCUMENTATMO PAGE srl opa aF
M.RPR UMBER ACCEulm 3. K 1111 urs A AL35uue

NPS52-84-018 _______________

14. TITLER (anst .e). I. Twe or MPON & V.EmmO covnc

Towards An Ideal Database Server For Office
Automation Environments______________

I. .aupOues ONe. MWOmT uuumeS

7. AUTHOR(*)DRGATNM

* Steven A. Demurjian, David K. Hsiao, Douglas
S. Kerr and Paula R. Strawser

0. PERFORMING ORGANIZATION NAME AND ADDRES M TAWK

Naval Postgraduate School 61153NR; M'1A-OP-O1
- ~Monterey, California 93943N(O1FI.''

11- CONTROLLING OFFICE NAME AND ADDRESS a- RPORT OATS

*Chief of Naval Research October 1984
*Arlington, Virginia 22217 99. NMBNER OF PAS

14. MONITORING AGENCY NME A ADDREKS1(5i tth I frese C.*.a11* O000c) IS. SEURTY CLASS. Of9 we ofe1

If. DISTRIBUTION STATEMENT (eflthi Re..e)

17. DISTRIBUTION STATEMENT (of .h chiewe entseed in filcoA St. if011M hfen MWN

* 16. SUPPLEMENTARY NOTES

* 19W. IKY WORDS8 (C"IMS U an. 9* aide it eoee"M &W 0~0~t 4W Weekh saber)

Office automation systems are growingbt nueadi complexity. The
evelopment of a database management system for the office automation environment*
ecomes a high priority, in order to provide an efficient and reliable way to

* nage the information needs of the office. Therefore, the specification of an
'ideal' database server for the offi-e automation environment becomes a key area

* f concern. in addition to providing traditional support, the ideal database
* server must also provide new database support, in order to meet the unique and

ny needs of office automation environments. In this paper, we focus on the,____

I.DO I jAN7 1473 EDITON OF 5NOV 66IS OSOLETE

S/H 0102- LF. 014. 6601 SEU9T LSS1CAIWOFTI PASS (We 10

WCUIRY CLWFICAION F WU

megUNTY CL*SbFI@ATOW OF ?WS P"9 fM% 09" MWS*

characterization and specification of an ideal database server, for the ottIce
tomation environment. We also consider how such an ideal database server can
effectively Integrated into the office automation environment. Further, we

ne an experimental database system, known as the multi-backend database

ystem (NSDS), as a candidate for the ideal database server in the office auto-

tion environmentj\

4'In'

b 4.

. -1-

' UPA ,'-O.A..-

j,. .
.- ...

'. ~ ~.,. P."

SiN 010. tF. 0460
....

A.:v::U * V% *** VV* AIIP'CTII 0:* * r * PAIVlm Ih

1TWDS AN IDEAL. DA~TABASE SERVE

FUR OEFIE AUTDATIO e*W TS.

:4Steven A. Dunurj ian, Dav id K. Hs iso,

Douglas S. Kerr and Paula R. Str. r

October 1984

ABS71RAC

Office automation systems are growing, both i n use and i n complIexi ty.
The development of a database managument system for the office automation
environment becomes a high priority, in order to provide an efficient and
reliable way to manage the information needs of the office. Therefore, the
specification of an 'ideal' database server for the office automation environ-

ment becomes a key area of concern. In addition to providing traditional
database support, the ideal database server must aliso provide new database
support, in order to meet the unique and many needs of office automation

environments. In this paper, we focus on the characterization and specif'ica-

tion of an ideal database server for the office automation environment. We
also consider how such an ideal database server can be effectively integrated

into the office automation environment. Further, we examine an experimental
database system, known as; the multi -backend database system (MS), as a can-

didate for the ideal database server in the office automation environment.

Twork rRrted herein is suprtied by Contract NOOO1 405

r tabase : ystems *search, al ostgrdaecoIay
*0 ~~rj ion an D. K. ll re with VVLaborp.tory jor atabase

grnt o trr Sc ience, IUuvrs ora, r e i , ~h.Dpfl
220 St~r ris wL ToaiY-tAA i~

nte rn't~wn ights W,

As office automation systems (W) become more prevalent in the work

place, the need for database support in the office automation environment

(.) becomas. key issue. In this paper we attempt to provide the character-

ization of an ideal database server for lIEs. The databease server is used to

* provide traditional as well as new database support in the OAE. In addition,

we study various approaches to the integration of the database server into an

(ME. In our characterization ard study of an ideal server, we focus on the

use of an experimental database system, known as the multi-becked database
system (KDS), as the server. Although MBD6 my be far from ideal, it does

serve as a benchmark for measuring the other database servers for (Ms. In .

the rest of this paper we examine how an why L4e[S may be considered as a

database server for the GAE.

More specifically, in Section 2 we discuss the architecture and charac-

teristics of an ideal database server for the OAE. In Section 3 we briefly

describe the design and implementation of MS. In Section 4 we analyze how a

database server such as M)6 can be integrated into the 0E. The analysis

focuses on the multiple buckend architecture of MUDS and how it does satisfy

the architectural requirements of the ideal OAE database server. In Section

5, we analyze whether the unique design characteristics of M3DS meet the needs .
of the OAE. Final ly, in Section 6 we conclude this paper.

2. A OPPACJ'IIZATION OF AN MEAL IkTABASE SERVER

Won characterizing an ideal database server for the (OE, we focus our

efforts in two directions. First, we consider the architectural requirements

of the ideal database server tJh will facilitate the smooth integration of

the ideal database server into the OPE. Second, we consider the necessary

database system features or characteristics of the ideal database server for

the OAE. In the following two sections, we examine these two considerations

for an ideal database server in the ONE.

2.1. The Architectural Requirements

The basic structure of the OAE consists of a group of workstations con-

nected using a local-area network 0-"f (see Figure 1, where a workstation is
denoted with the letter W ina square box). To successful ly meet the needs of :-
this environment, the ideal database server must be integrated into the exist-

-1- *p*

~~~~~~~~~~~~~... ................. ..... .... •..... ... ...... ..... '.. ...... ...... ... .. .. .......................... '......;.............._............'........ .*.'. ."...% .... ,
;e e.................--*. *-.**- .- .% - _.



ing ONE. Th. integration of the ideal database server into the (ME- imte be
smot and have no S I I-effect anl ti existing GA. If the ie daeee

server run an a single, wweein it must be poeful enaugh to meet the

daalos iagw- adeofth rrent end future OGE. Thu, t seems ci-

cal thaet the idel database server should consist of initiall~y a few wre-

tiomandlate a dm o worka atork. Wihmlipewrsatos h

Figure 1. T'he Besic GES

Whether the workstations, which make up tin ideal databas seve act as
i nd v i dueal databoa oset', or cooperate to hawidi a tie database --ago e t
needs of the 0GE, is also an issue. It map. not be feaible, in a given OAE to
distribute the database management functionel ity. and Icad eain different
database servers on the mesnetwork, since the GS is not a distributed data-1-
base system. The GAE may requ ire a centra repoitory of date and progrms.

A' that is maintained and accessed via a single system-, so that the data and pro--

gri can be successful ly shared throughout the GAE. Overall1, the needs of
the GAE beoea crucial concern when specifying the architectural require-

mente of the ideal database server. In this consideration, an ideal database
server for GA-s shoulId be conf igured as a centralIi zed database system runni ng
on mult iple workstat ions.

2.2. The Six Characteristics

There are six major characteristics of an ideal database server. They
are software portabilIity, software independence, auto-conf igurabi I ity, sur-
vivabilIity, versatilIity, and performance. Software portabilIity provides the

i dealI database server w ith the ab iIi ty to be access ibl o n a wi de rang of
*hardare systan. Specifically, the ideal database server should not be re-
* tricted to a particular class of hardware and a specific type of operating

systam. Instead, i t shoul d be portable acros a wide rang of workstations and
operating systemus of the GAE. If the ideal database driver is implemented on

-2-



multiple workstations, the software components of the driver running on the

separate workstationm should be sufficiently independent, so that the ideal

database server will not beoome inoperative when a node (i.e., either one of

the software components on a workstation or a workstation) becomes disabled.
Software indepndence among systam components running on seperate workstations,
may el iminate software and hardoare interdependencies and-the complexity of
the ideal database server.

When running on multiple workstations, the idesl database server should

be auto-configurable and reconfigurable. Wen the OAE gr, i.e., the runber .*'

of workstations in the OAS increases, or a workstation becomes disabled, the

ideal database server should be able to adjust itself for the addition or loss

of workstations. Such adjustment should require no now programming and no

modification to the existing software drivers. Further, it should incur no

disruption of the OE or WYS. The ideal database server should also maintain

a consistent and up-to-date copy of the databese. When a node in the (IE is.

disabled, it is imperative that the ideal database server still be functional,

providing continuous, albeit l imited, access to the remaining database. This .

is also the survivability of the ideal database server.

The ideal databese server should also be versati le, providing the user

with more then one way of accessing the database. In an ( where there is a

large group of individuals from diverse beckpgrounds and with different experi-
ences in using databaee faci ities, the ideal database server should provide

different database Ilnguage interfaces in order to faci I itate the database

user with various ways of accessing the database. Final ly, the ideal database
server should be a database system that is oriented towards providing a sub-

stantial level of performance. As time goes by, both the use of the ideal

database server will increse and the dat and programa being stored in the

database will increase. To mea the growing needs of the (YE the ideal data- ,. %

base server must be able to expand as the OAE expands, and either mintain or

incrse its performance.

3. 1E NED OF A D %TSE CW WlMl MLT1.E BOM COINF1QRITC"-

3.1. The Pr Architecture for an Ideal Database Driver

We advocate that the architecture of an ideal database driver is config-

ured with one control ler and multiple beckends. A shwn in Figure 2, the

control or and the beckenda are connected by a broadcast bus. ien a

-3-

--V .• , * "-".., -.- P S - ' .' . ,-,, ."% ", ''- I %,' - _'.: :.



transaction is received from the host computer, the control ler broadcasts the

transaction to alI the backends. Each backend has a number of dedicated disk

drives. Since the database is distributed across the backends, a transaction

can be executed by all backends concurrently. Each backend maintains a queue

of transactions ard schedules queries for execution independent of the other

backends, in order to maximize its access operations and to minimize its idle

time. On the other hand, the controller does very little work. It is respon-

sible for receiving and broadcasting transactions, routing results, and

assisting the backends in the insertion of new data. The backends do all the

database operations. Just how this architecture may have the six characteris-

tics of an ideal database server will be expounded in the following sections

by way of an experimental database system which also has a similar architec-

tural configuration.

3.2. The Multi-B ckend Database System (IMECS) as a Database Driver

To provide a central ized database system, M1f[S uses one or more identical

minicomputers and their disk systems as database backends and a minicomputer

as the database control ler to interface with multiple, dissimilar workstations

or mainframes. We shall refer to these workstations and mainframes as hosts

or host computers. User access to the centralized database is therefore accom-

plished through a host computer which in turn communicates with the con-

troller. Multiple backends are configured in parallel. The original design

and analysis of M3DS are due to J. Menon [Hsiiala, Hsia8b]. An overview of

MI3[ can be found in [He83], with an analysis of the massage-pasing structure

in [Boyn83a]. The implementation and new design effort. are documented in

(Boyn83b, DemuS4, Kerr82]. The database is distributed across all of the

backends. The database management functions are repl icated in each backend,

i.e., all backends have identical software and hardware. They of course have

different portions of the database.

There are some key issues to explore when considering bflD for OAs. The

current implementation of bEDS uses minicomputers for both the control ler and

the backends. The original intent of the design was to implement a system

which ut i I i zes microprocessor-based computer systems, w i nchester-type disks
and an Ethernet- lI ke broadcast bus. Unfortunately, these were not avai lablewhen the implementation of bEDS began in 1980. There are a number of reasons

for preferring microprocessr-based computer systems or workstations over the

traditinal minicomputers. First, the a-bit microprocesser is quickly

S.-4-

6 .%



backnd 2one or more
disk drives

ackend one or more
disk drives

* hosBrConcrollnr

riur Th 5'Hrwr Opnzain



attaining a reputation as a dependable, versatile and fast computer system,

approaching the speed and performance of the minicomputers of five years ago.

Second, the microprocessor-based system is a cost-effective computer sys-

tem. This is important when considering that M.DS requires a minimum of two

computer systems. It also impli es that Mh[S can be expanded with relative

ease and minimal cost by the addition of backend microprocessor-based computer

systems.

The placement of the user interface is also affected by the use of

microprocessor-based computer systems. The user interface provides access to

MBDIS and is run from either a separate host computer system, or as part of the

system on the backend controller. Wen the user interface is on a separate

host computer, the interface interacts with the controller via a bus. In

either case, the use of a similar (with respect to the control ler and backend

hardware) microprocessor-based computer system for the user interface

increases the compatibility and the maintainability (with respect to the

hardware maintenance complexities and costs) of the database system.

The final major issue involves the ability of MBDS to support multiple

data model/language interfaces to the multi-backend database system (see

Appendix A). These multiple model/language interfaces allow the user to

access ME]S using the relational moel/SQL language, the hierarchical

model/ L/i language, the entity relationship model/Daplex language, or the

network model/CODSY. language. These interfaces are also running on either a

-eparate host computer or the backend control ler; and, as such, the issues

concerning the user interface also apply here.

One final note, in Appendix A, we provide a more detailed discussion of

the attribute-based data mode I, the attribute-based data language (ABIL), the

MB[l process structure, the system configurations (present and future), and

the multi-lingual capabilities of MBDS.

4. FIVE APPROACHES 10 fHE INTE(RATION OF MIES INTO THE OAE

In this section, we examine how MBDS can be integrated into the office

automation environment. Our main focus is on ways to integrate MEOS into the

04E, and the relative advantages/disadvantages of the integration configura-
tions. Recall that the basic OAS, consists of a group of workstations, con-

nected by a local-area network (LAN) such as an Ethernet [Metc76]. Such a

-6-

",', . . .*.* %* * *% *' . * '* .
"' vv . .• .' : : -'Y..'. .. ''. . ."" ,," -. "'.","".".. ." ." " ' ' " ; .' ".* '*'....:.'...t" " ."*"



',. - .o

design was shown in Figure 1. We now consider the integration of MMS into the

OAS. We approach the integration in five distinct ways.

In the first approach, MMS is added on as a separate group of worksta- i
tions in the GAS, with its own LAN. We characterize this approach as the

non-integrated dual-LAN design. In this approach, the additional workstations

are dedicated to the database management operations. As such, they are inac-

cessible for non-database activities. We provide the interface process,

(which may include one or more language interfaces) as part of the user-

accessible workstation. The resulting OAS is shown in Figure 3. In this and

the remaining four approaches, the placement of the interface software (i .e.,

the number of workstations and which workstations have the interface

software) is left to the discretion of the database administrator.

I---- I WI I WI .. I W I "
W ,, W W

I LAN

Figure 3. The Non-Integrated DuaI-LAN Design

The second approach is the non-integrated single-LAN design. In this

approach, as shown in Figure 4, MBDS and the OAS share a comon LAN. However,

the .M control ler and backend processors still remain as separate computer

systems in the OAE.

% %
'-_.'.- V



IWi iwi I.,

Figure 4. The Non-Integrated Single-LAN Design t.,

K The third approach, the partial ly-integrated design, integrates the back-

end processes as permanent background processes into some of the OAS worksta-

tions. The remainder of the MMS backends are implemented as user-

inaccessible workstations. The mix of the distribution of the backend

processes within the user workstations is controlled by the database adminis-

* trator in the OAE. The control ler is the key component in LUX, and should be

devoted to overseeing the management of the database system. Therefore, the

control ler software is placed in a separate workstation, that is not directly

utilized in the OAS. The partially-integrated design is shown in Figure 5.

IWI I..II W I

Figure 5. The Partial ly-Integrated Design

In the fourth approach, the isolated-control ler design, the M3)6 backend

* software is integrated into the existing workstations. As in the partially- .

integrated design, the controller processes are implemented in a user-

inaccessible workstation. The backend processes are installed as permanent

background processes in one or more workstations. The isolated-control ler

design is shown in Figure 6.

,.Z- ,%

4lk' .

-' . -:.,.._i,,_'i: '.': .... _...SL%:.%: "._° ". ._' _'._ _%'% "'_ ° ."o.'i.,_, _,4 li,% 4.'_ ,,.. i..-_ ,,_,,_ ..r'!:IU i,_'4"i'i,- ' ---''L *.4.
°

' ...



IWI II 1 BAC"E~

I I LAN

p % ""

Figure S. The Isolated-Control ler Design

In the fifth approach, the ful ly-integrated design, the WDS software is

cmpIetely integrated into the OAS. The control Ior processes are instaIl ed as -

permanent background processes on one workstation. The backend processes are
instal led as permanent background processes on one or more workstations. The

fully-integrated design is given in Figure 7.

IBJH i .. TA-efk ..

Figure 7. The Fully-Integrated Design

In the non-integrated dual-LAN design, we are using the GAS LAN as a log-

ical two-way communications device for MBCS. Messages ore passed from tJe

, interface process of a particular workstation to the controller and from the

control ler back to the interface process. In the remaining four designs, we

are using the local area network as a logical five-way conmunications device.

Messages are passed from the interface process to the control ler, from the

control Ilr to the backends, between the b ckends, from the backends to the

control ler, and from the control ler back to the interface process.
.-. .-

The trade-offs from one approach to the next depend on various perfor- .

mance and cost considerations. The non-integrated approaches differ only by

the cost of an LAN, but the corresponding performance gins of the dual-LAN

*pproech probably outweighs the cost of the extra LAN. In particular, the
burden on the LAN for the WbS is significantly lower in the dual-LAN design.

However, in both these approache, a high price is paid as the database and

transactions of M13CS grow in size and intensity. The integration of more
." backends into WDS is costly, since the new workstations are only accessible

-- ** ._ ? r ,*, p' 'A . I. L , *f2;2 oW.. . *_. ._ . *. *, * ' • .



to the database management system.

In such a situation, either the partially-integrated design or the

isolated-control ler design are feasible alternatives. In both cases, keeping

the controliler on a non-accessible workstation is a big performance plus. In

the partial ly-integrated design, as the database size grows, more user works-

tations can be configured into the database system. Further, in both cases

when all backends are being used as backends for MB[S, additional workstations

can be added to either system. In the partial ly-integrated design, those

workstations can be added as either dedicated database processors or user

workstations. Again, in both cases, the addition of more backends into M.8) is

more cost-effective, if the backends are added as user workstations. We feel

that the fully-integrated design is the least desirable. The controller as

part of a user-accessible workstation would substantially degrade the perfor-
mence of ME[S as the non-database use of the workstation at which the con-

troller resides increases.

Overall, the non-integrated dual-LAN design may yield the highest perfor-

umnce (ae Figure 3 again). The performance of the non-integrated single-LAN

a-4 partial ly-int4grated designs are about the same. However, the partial ly- -.

jrated design is more versatile and cost-effective. The isolated-
control ler design exhibits a moderate performance capability, but excels as a

cost-effective alternative. Finally, while the fully-integrated design is

cost-eff active, its performance may leave a lot to be desired.

5. SIX QWkqAC1ISrICS OF M.8) FOR AN EFFECrE ROLE IN lHE E

Regardless of the integration approach chosen, M.8) exhibits certain

characteristics that are desirable in the OAE. These characteristics include

the software portability of the MMS code, the software independence of the

backend code, the auto-configurability and reconfigurability of M39) on

account of its use of identical workstations and replicated software, the sur- .:*;

vivability of the system resulting from the use of duplicated directory data,

the versati l ity of system due to the ability of MB[MS to support multiple

language interfaces, and the performance capabilities of the system as a

result of its parallel configuration and round-robin data placement. Each of
these topics is examined in the fol lowing sections.

-10-

1%I

.* ~.% . .. • . .. .. *, .... , - *. . * *. *- ". - % ,. ,. .** S*' % % .-. -. * o*%* % Zj'WJ.IS



I
5.1. Software Portability

The tBDS processes, i.e., the controller processes, the backend

processes, and the interface process, are all written using the C programming

language. C was chosen as the programming language for B6 because of its
portability, and its reputation as a good system programming language. We".-.

esti mat that the code of M1D i s about n inety-f ive percent portablIe, cons ist-"'

i of3,0 lines of C code. The five percent of system-dependent code
involves the intr-process message-passing code on both th VAX and the PO:P- -:'

11/44s, the inter-computer message passing code for the GEr and RIT processes,

and the disk I/O routines for the record processing process. Thus, the great

majority of the code is portable. In fact, some of the implementation develop-

" ment for MBDS takes place on the a VAX-11/780 running the Unix operating sys-

"' tem, where we are able to take advantage of the C-tools provided by Unix.

Thus, we feel that we have designed a relatively portable database system,

that can be implemented on a wide range of the 3-bit micro-computers on the

* market today, e.g., the DEC MicroVAX, the Sun Workstation, etc.

5.2. Software Independence

In examining the software independence issue, we focus on the backend

processes. The elegance of M is that the backend software of one backend

is identical to the backend software of another backend. For logical reasons,

the directory data, used by each backend when processing requests, is

nevertheless dupl icated at every backend. However, the directory data is usu-

ally a small percentage of the non-directory data. Furthermore, the only

sharing of information by the backends occurs in one phase of the directory

search. Otherwise, the di rectory management, the concurrency control, and the

record processing processes are independent of each other. So, when a new

backend is configured into the system, the software present on one backend is

simply replicated on the new backend. Additionally, the directory data,

duplicated at an existing backend, is loaded into the new backend. Wien

bringing a new backend into M1BDS, we must also decide on whether to rearrange

the non-directory data. On the one hand, we can redistribute all of the non-
directory data across the disk systems of every backend. This involves

reloading the data. On the other hand, we can simply leave the data undis-

turbed, loading only new deta on the new backend. The choice is left to the K
discretion of the database aministrator. .-

a"-..

-11-.:
*.-,-,

r ............. *.--% ' v'



5.3. Auto-Configurabi I ity

One of the most convenient features of EBDS is the ability to automati-

cal ly configure and reconfigure the system with ease. When starting the sys-
tem for the first time, the da administrator simply specifies, using the

interface, the number of backends in the system. hBDS then configures itself

by notifying the control ler and backend processes the number of backends on

the system. Using this unique feature, M3DS can be reconfigured when a back-

end becomes inoperable. In such a situation, MBD6 is configured with one less

backend. Conversely, when a new backend is added to the system, the system

can be configured with on more backend easi ly.

5.4. Survivability

KOS contains only one copy of the non-d i rectory database. When the

database is loaded, it is distributed evenly across all backends' disk sys-
tens. However, the directory data, which contains index and cluster informa-

. tion on all data in the database, is duplicated in every backend. The distri-

buted directory data, coupled with the software independence and reconfigura-

bility of LEDS, offers an increased survivability of the database system in

the OAE. If a beckend or backends become inoperable, the system is still

usable. Wh le a backend is inoperable, a log of transactions that modified

both the directory and the non-directory data is kept. When the backend is

reconfigured into MBDS, the log is run for the purpose of updating the direc- -'

tory and other data. Al though portions of the non-di rectory data become i nac-

cessible with the inoperable backends, MBDS can still access and retrieve the

rest of the data. Incomplete data is better than no data, provided that the

user is informed of the situation.

5.5. Versatility

One of the biest advantages of having MB[ as part of an OAS is the

ability of MS to provide support for multiple data models (and therefore
data languages) through the use multiple laruge-bsed interfaces. In the

" EY E, where users are from a varied range of backgrounds, such a utility is a

unique feature in a database management system. In fact, the language inter-
-; faces con be tai lord by the workstation. One workstation Ioud have a S 'QL-

interflace, another a OL/I interface, a third a Deplex interface, and perhaps

still another have a CMASY. interface. By tailoring the language interfaces

by workstation, the software required for each interface process could be

-12-
'V* '. % *•,*_

9.- .* ... *-



reduced. Conversely, with a wide range of language interfaces available at

every wokstation, the workstation becomes more accessible to a wide range of ;.'

users.

5.6. Performance

The perfomance capabilities of any DM are important in an (iOE, since At
the [6 tends to serve as a repository of all the permanent data and programs

of the (iE. As the repository becomes large and the database activities
increase, the [EB6 as a database server may become the performance bottleneck.

However, M3DS is specifical ly designed to provide for capacity growth and per-

formance enhancement. The performance metric of major concern is the response

time of a request. The response time of a request is the time between the

initial issuance of the request and the receipt of the final results for the

request. WDS has two original design goals. First, if the database capacity

is fixed and the number of backends is increased, then the response time per

request reduces proportionately. For example, if a request had a response

time of 60 seconds when there is one backend, the same request would have a

response time of nearly 30 seconds when there are two backends, and of nearly

15 seconds when there are four backends, provided that the database size has

rome i ned constant.

The second goal is stated that for the same requests, if the response

sets are increased due to an increase of the database size and the number of

backends is increased in proportion to the increase of response set, then the

response time per request remains the same. For example, if a request had a

response time of 60 seconds when there is one backend with 1000 records in the

response set, then the same request would have a response time of close to 80
seconds when there are two backends and 2000 records in the response set. The

underlying concept in each 9oal is that M3DS in the W would supply a data-

base system that would grow as the OAS grs, and would either increase or

maintain a constant response time per request by 'growing' its backends or

half a given response time per request by 'doubling' its backends. On the

basis of our preliminary analysis, the operational MD6 can indeed meet the

two goals. The analysis is also documented in [Teka84].

6. CNMIEJSIONS

We have shown how M3DS can play an important role in the O#E as an

Specifically, we have shown how MBDS can provide both traditional and new

* . -

, /-':"','S " ."-b. b - .- '" :''-2' ";. -':" " - " . . _. -13- . €



database support. W. have a l so shown Why and how MMS shoulId be i ntegrated
i nto an OAS, i ., what hUBS has to offer to an GtE. In parti cula r, MUBS can
be integrated into an GAS in a number of ways, depending upon the nseda of the
off ice automation environent. Once M3DS is configured in an GAS, the recor-
figurabilIity feature, coupled with the replicated beckend aoftrore structuire,

permits the database system to grow as the needs of the off ice information .s

grow. Additional ly, when M3DS expends, the response time par request for the
system dec.eme proportionately, as long as the database size remains con-
stant. As the database gr. in size so grow the responses, bUDS can maintain
the response time for the sane type of database services by expending its
backends.

As a multi -I i ngual database system, MBDS offers the ab iIi ty to wces the
database us ing a var iety of l anguage i nterf aces. From the basic doa
l anguiage, ABDL, to sophisticated date language such as SQL, Deplex, CS1-

and CL/I, the user can select a language. to qAery. the database. The high....

degreof softwre portabiity exhibitedby MES, allowm the system to be
implemented on a wide range of micro-computers, offering database support for
a wide range of office automation systems. Overall, we feel that MBDS is an -

dealI database system for the office autoation env ironment.

%J

N S

-14-.



agfrrenc 1978. 19u". an Hai ______dC i

Or ci 1a8 B BainA& .,Wwr ~n o0t ? !
No. i embet19M.

BemreJ., Hibso, D. K *n 1~ F.N Rtas rnmfo to
Vg .irarch8i m l abseMamctatre~

~,Mrch 1_______Eiine-*-
IBbynBaJ no1 R. , et I "A Mpsaae-Oriented Pnplwmpntjjit of A, Myl Iti-

I=end D9= 1 sestem~ S jI n tbas kbch ines, Lei II icianda~sskoffSpring r-V~r g ~

DEC79 "PCL1-P.Paralltel Coimnication Link Differential fld Bus," Digital
* Equipment Corp., Maynard, Mass., 1979.

ab D ujirk t I, The Inp ttion of a I&lti -8kend
asu~i~)A~ V The Revjsed cyrtaa&Sse N tl V ure trol and irec-toyMnaemn Frocesseg arid nh teie Def ,.~n of rter-Irrocess andIn t Cnuressa gsrn*echnical Repot N-52-84-006f, va PostgraduateShool bbtry aIfona March 1984.

LA p .,et a~h, "The Imp Iemntation of a Mu BcedDeaaeSse
~ 1 ~rtI -TheDesi*gn of a 1, 60 n A rdvnced Dtaas

WhNnoArchi tecture, Hsi ao (id) , PrenticeHuln
IHsi9 i7O] 1 Hliao, R, 1 .,,aNdHIariy, F., " of n f ~T i'~ nf?,rmation

* 1970, Corrigenda, Vol 13. , rW. 3, wInrn 9. W
HsiT84aJ Hsiao D. K. and Menon, M. J., "Desi gn and Analysi; of. a
Muti _ ckend batabasar: tqg fo ~ n~Tjrv nk M

E xpas gang CappaFvraty Peeo ,9c 1  sort
- ,TsIio taeU mu Ohio, JulIy 58

[Hsi a8lbJ Hs iao, K. Kang 4einM "Des~g and Analysis Of
l~at~ase )jo ove en n H~

SPC~hiotateUniversity, Iumbus, Ohio, August V1
[Ker-82J Krr, Q. S. et aI. I "Th Inplem~ntation of a MuJltii ckend..~aas

Svst~~qn~fflS'~'Part t5,okkMare ~nm Xa~i esndowt ardsa
P'~s;" ical~~~-t r-80?, The UhoSa. i ver-

sity, bus, Ohio0, January19.

SG., "Desigrj and Ana lysithof an SQ Interface for a Muilti-
t~re, CaIiMaster'h ~s esis, Nval Postgraduate School, Moni-

&Vtcko] Mtcalfe, R. "&, and a-D. R., "Ethprnet:I istriWjk
witca.'or Local onuter M~ks," Coniunicat ions oVthe M o~

Pud84J Mul I jr, S., fr~eRg:gn and Arillysis ofJo..j{nd Ordering Operations
Xli ~ck~n Systemn, Maters a is, Naval Postgraduate

* School, Monterey, California, June 1984.

-25-

4%



.4 ., and Analysis ofa et. narpj
$Wi~]Weish of Cnv Hearchical- *w

Or ali y~ Ma ter theis, l I bstgraduate

iL2 &JsC Ciyt vsucu in. AttribsAe Bond
I_________oni on__ _ Seti lrgnl.

~6O1XA: 'RE MLLT4VOO lATBO SYS1BO

In this appendix we examine the structure of the mutti-badlond, dabbe
system, focusing an the data model, i.e., the attribute-based data moel , the

-:data I angag, i.e., the attribute-based chita Iangtiap (An),, the pi nlg

structuro, the system corfigjrtionis, and the akbi Iit)' oF = to &pa~rt a##-~
tiple data, mode:ls and cletabase languages.

* A.1 The Attribute-1aed Drta

*In the attribute-bined data moedel, daa smoeedwthth ontucs

database, f if, record, attrbute-value pair, irectory koymord di rect"r,
record body, keyword predicate, and query. Inforiul ly, a dwebam ca -sists of
a col lection of fi les.. Each f ile contains agroupof recordwhichawe
characterized by a unique set of directory keyawvrd. A record is ccoapW of
two parts. The f irst pert is a col lection of attribute-value pai rs or her-
words. An attr ibute-valIue pa ir is a , uaber of the Cartesi an product of the
attribute name and the value domin of the attribute. As an example, 4KJ-
LATICI, 25000> is9 an attr ibute--valIue pa ir hav ing 2=00 as the val ue for the
population attribute. A record contains at -mb one attributo-value pair for
each attribute defined in the database. Certain attribute-value pairs of a

record (or a f ile ) am caldte dih ~~fh recoyryorl fth md (f ;Ile),

because either the attribute-value pairs or their attribute-value w am~

kept in a dircir for addreseing the record (f iIs). Those attribute-value
pai rs which are not kept in the di rectory for addreming the recor (f1ie) are
call Ied non-d irectory keywords. The rest of the recor isa textualI i nforwation,
whi ch isa referred to astheOM re ord . An exumplIe of a recod i asttoni

below.



FILE, Cenaus), <C111Y, Motteray> OUAT 25000>.

The angle brackets, <, >, enc Icoo an attr ibute-valIue pa ir, i .ea. keyword. The

curly brackets, {,J, include the, record body. "The first attribute-value pair
of all records of a file is thesame. In particular, the attribute is FILE

and the vale Isisa the f ilIe name. A record isa enc I oed i n the pa renthes is. For
*xalrplIe, the above amtplIe record isa f rom the Census f ilIe.

T1he dstabaa is accessed by indexing on di rectory keywords us ing keyword

pred icates. A keyword predicate is a tuple consisting of an attribute, a
relational operator (,I,, )i<),and an attribute value, e.g., POFU-

LATIONJ >= 20000 is a keyword predicate. More specifically, it is a greater-

than-or-equal-to predicate. Comb in ing keyword predicates in di sjunctivye nor-

malI form characterizes a Qur of the database. mTe query

FILE.1 fR mt~__ or

will be satisfied by all records of the Census file with the CITY of either

Monterey or San Jokse. For clarity, we also em'ploy parentheses for bracketing
predicates in a query.

A .2 The Attrigbute-Based Data Language (ABDI-)

The ABD. supports the four primary database operations, INSERT, DEfLE,

LFIDAE, and RTRIEV#E. A request in the ABDL. is a primary operation with a
qualification. A qualification is used to specify the information of the

database that is to be operated on. Two or more requests grouped together

characterize a transaction. Nw, let us briefly examine the four types of

requests.

The INSERT request is used to i nsert a new record i nto the database. The

qualification of an INSERT request is a list of keywords which describe the

record be ing i nserted. ExamrpIc 2.1 conta ins an INSERT request that

Example 2.1: INSERT (Coiputer Sience Department>,
N WHs iao> , "SJ~, 50,000D>)

that will insert a record into the Computer Science Department file for the

cmp loyee Hsiao with a salary of S50,000.



- .-..

A DEETE request is used to remove record(s) from the database. The

qual ification of a DEEE request is a query. Example 2.2 is a request, tht

ExwiplIe. 2.2: DELETE Co r Coj cwec Deartiment) It

would delete all records whose salary is greater than 100,000 in the Co rpter

Science Department file.

An LPTt1E request is used to modify records of the daotabas. The qua 1 f-"

ication of an LPOidE request consists of two prts, the query and the modif-

ier. The _qu.. specifies which records of the databese are to be modified.

The modifier specifies how th records being modified are to be updated.
Example 2.3 is an LPIkaE request that

ExamplIe 2.3: LPQO1E (C D. Coitent

will modify all records of the Computer Science Department file by increasing

all salaries by S6,000. In this example, ( (FILE = Computer Science Deparo-

ment) ) is the query and (S.ARY = SALARY + $5,000) is the modifier.

Lastly, the RETRIEVE request is used to retrieve records of the database.

The qualification of a retrieve request consists of a query, a target-list,

and a BY clause. The query specifies which records are to be retrieved. The

target-list is a list. of output attributes. An aoregate operation, i.e.,

AVG, CUJff, SLM, IN, MAX, may be appl ied to one or more attributes in the

target-list. The optional BY clause may be used to group records when an

agregate operation is specified. The FETRIEVE request in Example 2.4 will

retrieve

ExamplIe 2.4: FTRIW ((FILE te c DepWt) A

the employee names of all records in the Computer Science Departmeont file with

city being Monterey. ((FILE = Computer Science Department) A

(CITY : Monterey) ) is the query and (PWAE) is the Target-List.

Obviously, AB11 is considerably more complete than the aforementioned

examples have shown. For our purpose, these examples will suffice.

_S.



A.3 The Process Structure

Currently, MIlBec/[BS does not communicate with a host machine. The

absence of this communication requires that the test interface process, the
process used to interact with MulBac/DBS, be placed in the MulBc/DBS con-
troller. In this section we describe the process structure of MulBec/1B.

First we present the test interface process, which is used to access the sys-
te . Next, we review the processes of the control ler. Final ly, we describe

the processes of each backend.

A.3.1 The Test Interface Process

The test interface process is a menu-driven interface to the W fuBac/10BS.

The main actions of the test interface are, loading a database, generating a

database, and executing the request interface. When executing the request
interface, the user has the option to choose a new database to work with,

create a new list of traffic units, modify an existing list of traffic units,

select traffic units from an existing list for execution, select an existing

list so that all traffic units on the list may be executed, or specify the

display mode of the results.

A.3.2 The Processes of the Control ler

The controller is composed of three processes: request preparat ion,
insert information generation, and post processing. Request preparation

receives, parses and formats a request (transaction) before sending the for-

matted request (transaction) to the directory management process in each beck-
and. Insert information generation is used to provide additional information

to the backends when an insert request is received. Since the data is distri-
buted, the insert only occurs at one of the backends. Thus it must determine

the backend at which the insert will occur, along with certein directory .;
information. Post processing is used to collect al I the results of a request

(transaction) and forward the information back to the host computer.

A.3.3 The Processes of Each Backend

Each backend is also composed of three processes. They are of course dif-

ferent from the control ler processes. They are: directory management, con-
currency control, and record processing. Directory management performs the

I ** * e

-19- .

:..(



searchs of the di rectory structure to determi ne the secondary- storag 66e~p
necessary, to acces the c I ustered records. Concurriyocy control daetrines
when the request can be executed. Record processi ng perforum the operation
spec ifiead bxthe), reuest..

a A&4 The Current and Future. Conf igurations

The curr ent; harwre conf iguration. of WMconsists- oft a VAX-1uf7 run'-
01 ng as the control Ior, and two PC-1/44& runnin as m backends a. ouiunicat~an

* 'a

between computers in M30S is achieved-.by using a time-division-multiplexed bus

call Ied the parallel * commun ication Ii nk (PC-llg [DEC7g]. The, rea tote a
of three PCLs in the configuration, two from theVAX-11/780 to the F-11/4ft,

and one between the two, PP-11/44s. *wen tie iuaplemetabioanof MW6 began in
MDS, the reqlui red broadcast bus was noot avai IlablIe. Even thou~h Jwerequi redla4

boadcast bus for our- desigSp, the PCL was choseni. T'he VAX-11/78D runs the %~W

operati ng. system, Wi th the-PIP-11/44s runn i ng the RFC-11M operati ng system.

TheVA*11f80swers a.. dualI purps in the, current configuration, as
* both the host computer- and the controller. In addition, to the controller

processes described in Section 2.3, we have also implemented the. interfaee
process on the VAX. Gi ven the Ilarge, v irtual and pr imary .memory capac itieas of
the VAX, we felt that the additional overhea of runni ng the i nterface process :

*in the control ler would- not be substantial. The PWP-11/44s conta-in only the
backend processes. Plans are being nade to replace the PCL-128s with an
Ether-net- i ke broadcast bus and the VA-11/789 and PIP-U/Msa with
mi rcrcprocesr-baaedl CJRJ and winchester-type disk systess, and increase the
number of backenda andthsir disk systems to six.

k. 5 Support ing, Mu Iti p I Lanquage-1seed Interfaces

Typical ly, the design and implementation of a, conventional date~ aye-
tem begins with the choice of a date model, the specification of a model-ae

*data language, and the design and implementation ofa databaae system vhich

controls and executes the transactions written in the date lagae Thus, we
* have the relational model, the SQL language and, the SI41)eta System. Simi- *

larly, we have the hierarchical model, the IV/I language and the DS system.
*We may alIso have the case of the CMSYL modelI, l anguage and systam. The con-

ventional approach to the design and inplementetion of a system is l imited to .9-

a single dta model, a specif ic date langag and a homogeneous database

s~~~~~* N qN-V! _MZZ



system. However, the attributd-ae model and the attribute-based data
Wagage Of the multi-backend database system 0013M) are sufficiently pwru

and high-Ievel and can support mltiple data models and several model-

languages as if the system were a heterogeneous col lection of database sys-

This unconventi onal design and implementation approach reveals two impor- __"

tant database concepts. First, that the attribute-based model is an exceed-
ingly simple yet powerful data model, such that many other data models may be
realized easily by using this data model. Second, the data language of MC6,

i.e., the attribute-based data language ABDL, consists of high-level and pri-

mary operations, such that most of the other model-based language constructs

can be mapped into ABDL in a straightforward fashion. There could be an SQL-
interface so that the transactions written in SQ;L can be carried out by M-S.

The execution of the transactions requires the SQ.. constructs to be

transformed into the primary operations of AEBOL through the interface. Simi-
larly, there could be a DL/I interface so that the transactions written in
SL/I can also be carried out by the interface. In this way, the single data-
base system and mult iple interfaces al low the system to support mult iple data
models and data languages as if it were a heterogeneous col lection of database

systems. In practice, we can construct a number of interfaces to support".'.,.
relational, hierarchical, and network operations with a minimal effort. Such
an approach is clearly an attractive alternative to the approach where 1"N

separate, stand-alone systems must be developed for specific models.

The procedure to construct a relational, hierarchical, or network inter-
face to W3B6 is done at both the database and data language levels. At the'-.

database level, the series of papers [Bane78a, Bane78b, BaneSO] demonstrated

that a relational, hierarchical, or network database can be converted into an
attribute-based database. At the data language level, we focus on the

development of language interfaces to the attribute-based system consistent % .

with the user's chosen language. At this level, we address three issues. The L
first issue is to determine how the operations of the chosen language can be

implemented using the operations of MIES. The second issue is the translation
of the language of the interface to the attribute-based data language. The
third issue is the placement of the language interface within hM.

Our current work on language interfaces to MMS is at the design level.

The two interfaces we have designed are for SQL [Macy84, Ro 1144] and for CL/I

-21- 1



[WeiaB4]. To facilitate the development of the S interface, we also have

developed algorithms to implement the sort and merge algorithms in 9DS.

?[WildB4]. Using these designs, we plan on implementing the two interfaces in

* the coming months. In addition, we will be publishing a number of papers on -
%t

interface development and implementation. It is sufficient to say that data- "

base support in an office automation environment should be multi-lingual in

database management. "

* ~,.'. S:.

S..',.-

-22-

.5.'

44 ~~j~5fh~~ 5 V'~* 5?.~V~* *-- * . * \~- *.,*S*. ~*S4~ * ~t .....



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2 _.
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943 .

Office of Research Administration 1
Code 012A
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52ML 10
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Prof. David K. Hsiao, Code 52Hq 130
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Chief of Naval Research ,:

Arlington, VA 22217

% '

Im.-.S S

. . -

'

".

iIj" f



F"" I

.84

D T II


